Spaces of Besov-Sobolev type and a problem on nonlinear approximation

نویسندگان

چکیده

We study fractional variants of the quasi-norms introduced by Brezis, Van Schaftingen, and Yung in Sobolev space W?1,p. The resulting spaces are identified as a special class real interpolation Sobolev-Slobodecki? spaces. establish equivalence between Fourier analytic definitions via difference operators acting on measurable functions. prove various new results embeddings non-embeddings, give applications to harmonic caloric extensions. For suitable wavelet bases we obtain characterization approximation for best n-term from basis smoothness conditions function; this extends classical result DeVore, Jawerth Popov.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear piecewise polynomial approximation beyond Besov spaces

We study nonlinear n-term approximation in Lp(R) (0 < p <∞) from Courant elements or (discontinuous) piecewise polynomials generated by multilevel nested triangulations of R2 which allow arbitrarily sharp angles. To characterize the rate of approximation we introduce and develop three families of smoothness spaces generated by multilevel nested triangulations. We call them B-spaces because they...

متن کامل

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.

متن کامل

Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross

Besov as well as Sobolev spaces of dominating mixed smoothness are shown to be tensor products of Besov and Sobolev spaces defined on R. Based on this we derive several useful characterizations from the the one-dimensional case to the ddimensional situation. Finally, consequences for hyperbolic cross approximations, in particular for tensor product splines, are discussed.

متن کامل

Interpolating Sequences on Analytic Besov Type Spaces

We characterize the interpolating sequences for the weighted analytic Besov spaces Bp(s), defined by the norm ‖f‖ Bp(s) = |f(0)|p + Z D |(1− |z|2)f ′(z)|p(1− |z|2)s dA(z) (1− |z|2)2 , 1 < p < ∞ and 0 < s < 1, and for the corresponding multiplier spaces M(Bp(s)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109775